The Seven Deadly Sins of AI Predictions

 

Have you been thinking about mistaken extrapolations, limited imagination, and other common mistakes that distract us from thinking more productively about the future? Here is a brief excerpt from an article by Rodney Brooks for MIT Technology Review in which he discusses several of the most compelling issues associated with “deadly sins” that he urges us to avoid.

* * *

We are surrounded by hysteria about the future of artificial intelligence and robotics—hysteria about how powerful they will become, how quickly, and what they will do to jobs.

I recently saw a story in ­MarketWatch that said robots will take half of today’s jobs in 10 to 20 years. It even had a graphic to prove the numbers.

The claims are ludicrous. (I try to maintain professional language, but sometimes…) For instance, the story appears to say that we will go from one million grounds and maintenance workers in the U.S. to only 50,000 in 10 to 20 years, because robots will take over those jobs. How many robots are currently operational in those jobs? Zero. How many realistic demonstrations have there been of robots working in this arena? Zero. Similar stories apply to all the other categories where it is suggested that we will see the end of more than 90 percent of jobs that currently require physical presence at some particular site.

Mistaken predictions lead to fears of things that are not going to happen, whether it’s the wide-scale destruction of jobs, the Singularity, or the advent of AI that has values different from ours and might try to destroy us. We need to push back on these mistakes. But why are people making them? I see seven common reasons.

[Here are the first two.]

1. Overestimating and underestimating

Roy Amara was a cofounder of the Institute for the Future, in Palo Alto, the intellectual heart of Silicon Valley. He is best known for his adage now referred to as Amara’s Law:

We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.

There is a lot wrapped up in these 21 words. An optimist can read it one way, and a pessimist can read it another.

A great example of the two sides of Amara’s Law is the U.S. Global Positioning System. Starting in 1978, a constellation of 24 satellites (now 31 including spares) were placed in orbit. The goal of GPS was to allow precise delivery of munitions by the U.S. military. But the program was nearly canceled again and again in the 1980s. The first operational use for its intended purpose was in 1991 during Desert Storm; it took several more successes for the military to accept its utility.

Mistaken predictions lead to fears of things that are not going to happen.

Today GPS is in what Amara would call the long term, and the ways it is used were unimagined at first. My Series 2 Apple Watch uses GPS while I am out running, recording my location accurately enough to see which side of the street I run along. The tiny size and price of the receiver would have been incomprehensible to the early GPS engineers. The technology synchronizes physics experiments across the globe and plays an intimate role in synchronizing the U.S. electrical grid and keeping it running. It even allows the high-frequency traders who really control the stock market to mostly avoid disastrous timing errors. It is used by all our airplanes, large and small, to navigate, and it is used to track people out of prison on parole. It determines which seed variant will be planted in which part of many fields across the globe. It tracks fleets of trucks and reports on driver ­performance.

GPS started out with one goal, but it was a hard slog to get it working as well as was originally expected. Now it has seeped into so many aspects of our lives that we would not just be lost if it went away; we would be cold, hungry, and quite possibly dead.

We see a similar pattern with other technologies over the last 30 years. A big promise up front, disappointment, and then slowly growing confidence in results that exceed the original expectations. This is true of computation, genome sequencing, solar power, wind power, and even home delivery of groceries.

AI has been overestimated again and again, in the 1960s, in the 1980s, and I believe again now, but its prospects for the long term are also probably being underestimated. The question is: How long is the long term? The next six errors help explain why the time scale is being grossly underestimated for the future of AI.

2. Imagining magic

When I was a teenager, Arthur C. Clarke was one of the “big three” science fiction writers, along with Robert Heinlein and Isaac Asimov. But Clarke was also an inventor, a science writer, and a futurist. Between 1962 and 1973 he formulated three adages that have come to be known as Clarke’s Three Laws:

o When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong.

o The only way of discovering the limits of the possible is to venture a little way past them into the impossible.

o Any sufficiently advanced technology is indistinguishable from magic.

Personally, I should probably be wary of the second sentence in his first law, as I am much more conservative than some others about how quickly AI will be ascendant. But for now I want to expound on Clarke’s Third Law.

Imagine we had a time machine and we could transport Isaac Newton from the late 17th century to today, setting him down in a place that would be familiar to him: Trinity College Chapel at the University of Cambridge.

Now show Newton an Apple. Pull out an iPhone from your pocket, and turn it on so that the screen is glowing and full of icons, and hand it to him. Newton, who revealed how white light is made from components of different-colored light by pulling apart sunlight with a prism and then putting it back together, would no doubt be surprised at such a small object producing such vivid colors in the darkness of the chapel. Now play a movie of an English country scene, and then some church music that he would have heard. And then show him a Web page with the 500-plus pages of his personally annotated copy of his masterpiece Principia, teaching him how to use the pinch gesture to zoom in on details.

Watch out for arguments about future technology that is magical.

Could Newton begin to explain how this small device did all that? Although he invented calculus and explained both optics and gravity, he was never able to sort out chemistry from alchemy. So I think he would be flummoxed, and unable to come up with even the barest coherent outline of what this device was. It would be no different to him from an embodiment of the occult—something that was of great interest to him. It would be indistinguishable from magic. And remember, Newton was a really smart dude.

If something is magic, it is hard to know its limitations. Suppose we further show Newton how the device can illuminate the dark, how it can take photos and movies and record sound, how it can be used as a magnifying glass and as a mirror. Then we show him how it can be used to carry out arithmetical computations at incredible speed and to many decimal places. We show it counting the steps he has taken as he carries it, and show him that he can use it to talk to people anywhere in the world, immediately, from right there in the chapel.

What else might Newton conjecture that the device could do? Prisms work forever. Would he conjecture that the iPhone would work forever just as it is, neglecting to understand that it needs to be recharged? Recall that we nabbed him from a time 100 years before the birth of Michael Faraday, so he lacked a scientific understanding of electricity. If the iPhone can be a source of light without fire, could it perhaps also transmute lead into gold?

This is a problem we all have with imagined future technology. If it is far enough away from the technology we have and understand today, then we do not know its limitations. And if it becomes indistinguishable from magic, anything one says about it is no longer falsifiable.

This is a problem I regularly encounter when trying to debate with people about whether we should fear artificial general intelligence, or AGI—the idea that we will build autonomous agents that operate much like beings in the world. I am told that I do not understand how powerful AGI will be. That is not an argument. We have no idea whether it can even exist. I would like it to exist—this has always been my own motivation for working in robotics and AI. But modern-day AGI research is not doing well at all on either being general or supporting an independent entity with an ongoing existence. It mostly seems stuck on the same issues in reasoning and common sense that AI has had problems with for at least 50 years. All the evidence that I see says we have no real idea yet how to build one. Its properties are completely unknown, so rhetorically it quickly becomes magical, powerful without limit.

Nothing in the universe is without limit.

Watch out for arguments about future technology that is magical. Such an argument can never be refuted. It is a faith-based argument, not a scientific argument.

* * *

Here is a direct link to the completer article.

Rodney Brooks (https://people.csail.mit.edu/brooks/is the Panasonic Professor of Robotics (emeritus) at MIT. He is a robotics entrepreneur and Founder, Chairman and CTO of Rethink Robotics (formerly Heartland Robotics). He is also a Founder, former Board Member (1990 – 2011) and former CTO (1990 – 2008) of iRobot Corp. 

 

Posted in

Leave a Comment





This site uses Akismet to reduce spam. Learn how your comment data is processed.