Quantum computing just might save the planet

Here is an excerpt from an article written by Peter Cooper, Philipp ErnstDieter Kiewell, and Dickon Pinner for the McKinsey Quarterly, published by McKinsey & Company. To read the complete article, check out others, learn more about the firm, and sign up for email alerts, please click here.

* * *

The emerging technology of quantum computing could revolutionize the fight against climate change, transforming the economics of decarbonization and becoming a major factor in limiting global warming to the target temperature of 1.5°C (see sidebar “What is quantum computing?”).Even though the technology is in the early stages of development—experts estimate the first generation of fault-tolerant quantum computing will arrive in the second half of this decade—breakthroughs are accelerating, investment dollars are pouring in, and start-ups are proliferating. Major tech companies have already developed small, so-called noisy intermediate-scale quantum (NISQ) machines, though these aren’t capable of performing the type of calculations that fully capable quantum computers are expected to perform.Countries and corporates set ambitious new targets for reducing emissions at the 2021 United Nations Climate Change Conference (COP26). Those goals, if fully met, would represent an extraordinary annual investment of $4 trillion by 2030, the largest reallocation of capital in human history. But the measures would only reduce warming to between 1.7°C and 1.8°C by 2050, far short of the 1.5°C level believed necessary to avoid catastrophic, runaway climate change.Meeting the goal of net-zero emissions that countries and some industries have committed to won’t be possible without huge advances in climate technology that aren’t achievable today. Even the most powerful supercomputers available now are not able to solve some of these problems. Quantum computing could be a game changer in those areas. In all, we think quantum computing could help develop climate technologies able to abate carbon on the order of 7 gigatons a year of additional CO2 impact by 2035, with the potential to bring the world in line with the 1.5°C target.Quantum computing could help reduce emissions in some of the most challenging or emissions-intensive areas, such as agriculture or direct-air capture, and could accelerate improvements in technologies required at great scale, such as solar panels or batteries. This article offers a look at some of the breakthroughs the technology could permit and attempts to quantify the impact of leveraging quantum-computer technology that are expected become available this decade.

Solving so far insoluble problems

Quantum computing could bring about step changes throughout the economy that would have a huge impact on carbon abatement and carbon removal, including by helping to solve persistent sustainability problems such as curbing methane produced by agriculture, making the production of cement emissions-free, improving electric batteries for vehicles, developing significantly better renewable solar technology, finding a faster way to bring down the cost of hydrogen to make it a viable alternative to fossil fuels, and using green ammonia as a fuel and a fertilizer.

Addressing the five areas designated in the Climate Math Report as key for decarbonization, we have identified quantum-computing use cases that can pave the way to a net-zero economy. We project that by 2035 the use cases listed below could make it possible to eliminate more than 7 gigatons of CO2 equivalent (CO2e) from the atmosphere a year, compared with the current trajectory, or in aggregate more than 150 gigatons over the next 30 years (See Exhibit 1).

Shift 1: Electrifying our lives

Batteries

Batteries are a critical element of achieving zero-carbon electrification. They are required to reduce CO2 emissions from transportation and to obtain grid-scale energy storage for intermittent energy sources such as solar cells or wind.

Improving the energy density of lithium-ion (Li-ion) batteries enables applications in electric vehicles and energy storage at an affordable cost. Over the past ten years, however, innovation has stalled—battery energy density improved 50 percent between 2011 and 2016, but only 25 percent between 2016 and 2020, and is expected to improve by just 17 percent between 2020 and 2025.

Recent research3 has shown that quantum computing will be able to simulate the chemistry of batteries in ways that can’t be achieved now. Quantum computing could allow breakthroughs by providing a better understanding of electrolyte complex formation, by helping to find a replacement material for cathode/anode with the same properties and/or by eliminating the battery separator.

As a result, we could create batteries with 50 percent higher energy density for use in heavy-goods electric vehicles, which could substantially bring forward their economic use. The carbon benefits to passenger EVs wouldn’t be huge, as these vehicles are expected to reach cost parity in many countries before the first generation of quantum computers is online, but consumers might still enjoy cost savings.

In addition, higher-density energy batteries can serve as a grid-scale storage solution. The impact on the world’s grids could be transformative. Halving the cost of grid-scale storage could enable a step change in the use of solar power, which is becoming economically competitive but is challenged by its generation profile. Our modeling suggests that halving the cost of solar panels could increase their use by 25 percent in Europe by 2050 but halving both solar and batteries might increase solar use by 60 percent (Exhibit 2). Geographies without such a high carbon price will see even greater impacts.

Through the combination of use cases described above, improved batteries could bring about an additional reduction in carbon dioxide emissions of 1.4 gigatons by 2035.

We strive to provide individuals with disabilities equal access to our website. If you would like information about this content we will be happy to work with you. Please email us at: McKinsey_Website_Accessibility@mckinsey.com

* * *

Here are some questions corporates and investors need to ask before taking a leap into quantum computing.

  1. Is quantum computing relevant for you?Determine whether there are use cases that can potentially disrupt your industry or your investments and address the decarbonization challenges of your organization. This article has highlighted anecdotal use cases across several categories to showcase the potential impact of quantum computing, but we’ve identified more than 100 sustainability-relevant use cases where quantum computing could play a major role. Quickly identifying use cases that are applicable to you and deciding how to address them can be highly valuable, as talent and capacity will be scarce in this decade.
  2. How do I approach quantum computing now, if it is relevant?Once you have engaged on quantum computing, building the right kind of approach, mitigating risk and securing access to talent and capacity are key.Because of the high cost of this research, corporates can maximize their impact by forming partnerships with other players from their value chains and pooling expense and talent. For example, major consumers of hydrogen might join up with electrolyzer manufacturers to bring down the cost and share the value. These arrangements will require companies to figure out how to share innovation without losing competitive advantage. Collaborations such as joint ventures or precompetitive R&D could be an answer. We also foresee investors willing to support such endeavors to potentially remove some of the risk for corporates. And there are large amounts of dedicated climate finance available, judging by pledges made at COP26 that aim to reach the target of $100 billion a year in spending.
  3. Do I have to start now?While the first fault-tolerant quantum computer is several years away, it is important to start development work now. There is significant prework to be done to get to a maximal return on the significant investment that application of quantum computing will require.Determining the exact parameters of a given problem and finding the best possible application will mean collaboration between application experts and quantum-computing technicians well versed in algorithm development. We estimate algorithm development would take up to 18 months, depending on the complexity.It will also take time to set up the value chain, production, and go-to-market to ensure they are ready when quantum computing can be deployed and to fully benefit from the value created.

Quantum computing is a revolutionary technology that could allow for precise molecular-level simulation and a deeper understanding of nature’s basic laws. As this article shows, its development over the next few years could help solve scientific problems that until recently were believed to be insoluble. Clearing away these roadblocks could make the difference between a sustainable future and climate catastrophe.

Making quantum computing a reality will require an exceptional mobilization of resources, expertise, and funds. Only close cooperation between governments, scientists, academics, and investors in developing this technology can make it possible to reach the target for limiting emissions that will keep global warming at 1.5°C and save the planet.

* * *

Here is a direct link to the complete article.

Peter Cooper is an associate partner in McKinsey’s London office, where Dieter Kiewell is a senior partner; Philipp Ernst is a senior expert in the Hamburg office; and Dickon Pinner is a senior partner in the Bay Area office.

The authors wish to thank Ivo Langhans, Molly Tinker, and Mateusz Trzaska for their contributions.

This article was edited by Max Berley, a senior editor in the Washington, DC, office.

 

Posted in

Leave a Comment





This site uses Akismet to reduce spam. Learn how your comment data is processed.