Here is an excerpt from a classic article written by , , and for McKinsey Quarterly (). To read the complete article, check out others, sign up for email alerts, and obtain subscription information, please click here.
Illustration Credit: Dewey Cheatham
* * *
The data-analytics revolution now under way has the potential to transform how companies organize, operate, manage talent, and create value. That’s starting to happen in a few companies—typically ones that are reaping major rewards from their data—but it’s far from the norm. There’s a simple reason: CEOs and other top executives, the only people who can drive the broader business changes needed to fully exploit advanced analytics, tend to avoid getting dragged into the esoteric “weeds.” On one level, this is understandable. The complexity of the methodologies, the increasing importance of machine learning, and the sheer scale of the data sets make it tempting for senior leaders to “leave it to the experts.”
But that’s also a mistake. Advanced data analytics is a quintessential business matter. That means the CEO and other top executives must be able to clearly articulate its purpose and then translate it into action—not just in an analytics department, but throughout the organization where the insights will be used.
This article describes eight critical elements contributing to clarity of purpose and an ability to act. We’re convinced that leaders with strong intuition about both don’t just become better equipped to “kick the tires” on their analytics efforts. They can also more capably address many of the critical and complementary top-management challenges facing them: the need to ground even the highest analytical aspirations in traditional business principles, the importance of deploying a range of tools and employing the right personnel, and the necessity of applying hard metrics and asking hard questions. (For more on these, see “Straight talk about big data.”1 ) All that, in turn, boosts the odds of improving corporate performance through analytics.
Would you like to learn more about our Business Technology Practice?
After all, performance—not pristine data sets, interesting patterns, or killer algorithms—is ultimately the point. Advanced data analytics is a means to an end. It’s a discriminating tool to identify, and then implement, a value-driving answer. And you’re much likelier to land on a meaningful one if you’re clear on the purpose of your data (which we address in this article’s first four principles) and the uses you’ll be putting your data to (our focus in the next four). That answer will of course look different in different companies, industries, and geographies, whose relative sophistication with advanced data analytics is all over the map. Whatever your starting point, though, the insights unleashed by analytics should be at the core of your organization’s approach to define and improve performance continually as competitive dynamics evolve. Otherwise, you’re not making advanced analytics work for you.
‘Purpose-driven’ data
“Better performance” will mean different things to different companies. And it will mean that different types of data should be isolated, aggregated, and analyzed depending upon the specific use case. Sometimes, data points are hard to find, and, certainly, not all data points are equal. But it’s the data points that help meet your specific purpose that have the most value.
Ask the right questions
The precise question your organization should ask depends on your best-informed priorities. Clarity is essential. Examples of good questions include “how can we reduce costs?” or “how can we increase revenues?” Even better are questions that drill further down: “How can we improve the productivity of each member of our team?” “How can we improve the quality of outcomes for patients?” “How can we radically speed our time to market for product development?” Think about how you can align important functions and domains with your most important use cases. Iterate through to actual business examples, and probe to where the value lies. In the real world of hard constraints on funds and time, analytic exercises rarely pay off for vaguer questions such as “what patterns do the data points show?”
One large financial company erred by embarking on just that sort of open-ended exercise: it sought to collect as much data as possible and then see what turned up. When findings emerged that were marginally interesting but monetarily insignificant, the team refocused. With strong C-suite support, it first defined a clear purpose statement aimed at reducing time in product development and then assigned a specific unit of measure to that purpose, focused on the rate of customer adoption. A sharper focus helped the company introduce successful products for two market segments. Similarly, another organization we know plunged into data analytics by first creating a “data lake.” It spent an inordinate amount of time (years, in fact) to make the data pristine but invested hardly any thought in determining what the use cases should be. Management has since begun to clarify its most pressing issues. But the world is rarely patient.
Had these organizations put the question horse before the data-collection cart, they surely would have achieved an impact sooner, even if only portions of the data were ready to be mined. For example, a prominent automotive company focused immediately on the foundational question of how to improve its profits. It then bore down to recognize that the greatest opportunity would be to decrease the development time (and with it the costs) incurred in aligning its design and engineering functions. Once the company had identified that key focus point, it proceeded to unlock deep insights from ten years of R&D history—which resulted in remarkably improved development times and, in turn, higher profits.
Think really small . . . and very big
The smallest edge can make the biggest difference. Consider the remarkable photograph below from the 1896 Olympics, taken at the starting line of the 100-meter dash. Only one of the runners, Thomas Burke, crouched in the now-standard four-point stance. The race began in the next moment, and 12 seconds later Burke took the gold; the time saved by his stance helped him do it. Today, sprinters start in this way as a matter of course—a good analogy for the business world, where rivals adopt best practices rapidly and competitive advantages are difficult to sustain.

The good news is that intelligent players can still improve their performance and spurt back into the lead. Easy fixes are unlikely, but companies can identify small points of difference to amplify and exploit. The impact of “big data” analytics is often manifested by thousands—or more—of incrementally small improvements. If an organization can atomize a single process into its smallest parts and implement advances where possible, the payoffs can be profound. And if an organization can systematically combine small improvements across bigger, multiple processes, the payoff can be exponential.
Just about everything businesses do can be broken down into component parts. GE embeds sensors in its aircraft engines to track each part of their performance in real time, allowing for quicker adjustments and greatly reducing maintenance downtime. But if that sounds like the frontier of high tech (and it is), consider consumer packaged goods. We know a leading CPG company that sought to increase margins on one of its well-known breakfast brands. It deconstructed the entire manufacturing process into sequential increments and then, with advanced analytics, scrutinized each of them to see where it could unlock value. In this case, the answer was found in the oven: adjusting the baking temperature by a tiny fraction not only made the product taste better but also made production less expensive. The proof was in the eating—and in an improved P&L.
When a series of processes can be decoupled, analyzed, and resynched together in a system that is more universe than atom, the results can be even more powerful. A large steel manufacturer used various analytics techniques to study critical stages of its business model, including demand planning and forecasting, procurement, and inventory management. In each process, it isolated critical value drivers and scaled back or eliminated previously undiscovered inefficiencies, for savings of about 5 to 10 percent. Those gains, which rested on hundreds of small improvements made possible by data analytics, proliferated when the manufacturer was able to tie its processes together and transmit information across each stage in near real time. By rationalizing an end-to-end system linking demand planning all the way through inventory management, the manufacturer realized savings approaching 50 percent—hundreds of millions of dollars in all.
* * *
Here is a direct link to the complete article.