Here is a brief excerpt from an article written by Tobias Baer and Vishnu Kamalnathfor the McKinsey Quarterly, published by McKinsey & Company. To read the complete article, check out other resources, learn more about the firm, obtain subscription information, and register to receive email alerts, please click here.
To learn more about the McKinsey Quarterly, please click here.
* * *
The persistence of bias
In automated business processes, machine-learning algorithms make decisions faster than human decision makers and at a fraction of the cost. Machine learning also promises to improve decision quality, due to the purported absence of human biases. Human decision makers might, for example, be prone to giving extra weight to their personal experiences. This is a form of bias known as anchoring, one of many that can affect business decisions. Availability bias is another. This is a mental shortcut (heuristic) by which people make familiar assumptions when faced with decisions. The assumptions will have served adequately in the past but could be unmerited in new situations. Confirmation bias is the tendency to select evidence that supports preconceived beliefs, while loss-aversion bias imposes undue conservatism on decision-making processes.
Machine learning is being used in many decisions with business implications, such as loan approvals in banking, and with personal implications, such as diagnostic decisions in hospital emergency rooms. The benefits of removing harmful biases from such decisions are obvious and highly desirable, whether they come in financial, medical, or some other form.
Some machine learning is designed to emulate the mechanics of the human brain, such as deep learning, with its artificial neural networks. If biases affect human intelligence, then what about artificial intelligence? Are the machines biased? The answer, of course, is yes, for some basic reasons. First, machine-learning algorithms are prone to incorporating the biases of their human creators. Algorithms can formalize biased parameters created by sales forces or loan officers, for example. Where machine learning predicts behavioral outcomes, the necessary reliance on historical criteria will reinforce past biases, including stability bias.
This is the tendency to discount the possibility of significant change—for example, through substitution effects created by innovation. The severity of this bias can be magnified by machine-learning algorithms that must assume things will more or less continue as before in order to operate. Another basic bias-generating factor is incomplete data. Every machine-learning algorithm operates wholly within the world defined by the data that were used to calibrate it. Limitations in the data set will bias outcomes, sometimes severely.
* * *
Here is a direct link to the complete article.
Tobias Baer is a partner in McKinsey’s Taipei office, and Vishnu Kamalnath is a specialist in the North American Knowledge Center in Waltham, Massachusetts.